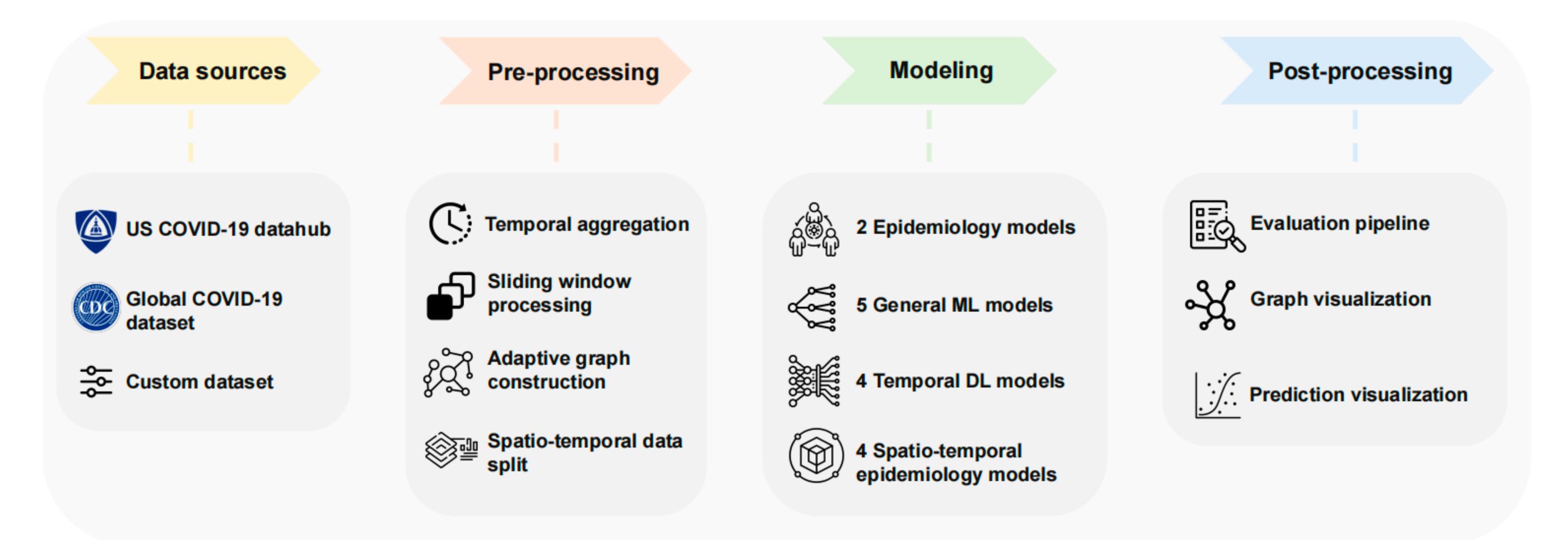
DeepEST: A Python Library for Spatio-Temporal Epidemiology Prediction

Yuhang Wang, Yinghao Zhu, Lifang Liang, Yasha Wang, Ewen M. Harrison, Liantao Ma, Junyi Gao†



- Traditional data sources in pandemic diseases field provide extensive spatio-temporal datasets, yet they underscore a need for sophisticated predictive tools that are accessible to public health researchers without deep technical expertise.
- Currently, there is no user-friendly spatio-temporal toolkit specifically designed for public health prediction.
- Objective: Build a comprehensive suite of tool which integrates advanced predictive spatio-temporal modeling or data preprocessing, model development, and visualization to reduce the technical barriers for researchers.

Motivation

Structure

Structure and pipeline of using DeepEST

Deep Learning Based Models

Machine Learning Based Models

Temporal	Spatio-temporal	Genearal ML	Epidemiology
• RNN	• STAN	• Arima	• SIR
• GRU	• ColaGNN	• XGBoost	• SEIR
• LSTM	• HOIST	• LightGBM	
 Transformer 	• TAP-RSV	• SVM	
		Random Forest	

Models

Supported models in DeepEST

```
>>> from deepest import dl_trainer, dl_tester, build_model, preprocess_data, construct_adjacency_matrix
# Data was preprocessed with z-score normalization, setting input and output windows to 7 and 3
respectively, and partitioned into training, validation, and test sets in a 3:1:1 ratio in temporal
dimension.
>>> st data = preprocess data(dynamic data, static data, label, input window=7, output window=3,
normalization="z-score", type="spatial-temporal")
# Get the data loader with batch size as 64
>>> trainset, valset, testset = st_data.get_dl_dataset()
>>> train_st_loader, val_st_loader, test_st_loader = get_dataloader(trainset, batch size=64, shuffle=True),
get_dataloader(valset, batch_size=64), get_dataloader(testset, batch_size=64)
# Calculate the Euclidean distance between static data of each node and filter nodes with a distance less
than 0.5 to construct a graph.
>>> edge_index = construct_adjacency_matrix(static_data, distance_matric="euclidean", threshold=0.5)
# Construct the model by preprocessed data and model name.
>>> model = build model(preprocess=st data, model name="colagnn", edge index=edge index)
# build trainer and tester from model
>>> trainer = dl trainer(model= model)
>>> tester = dl tester(model=model)
# train the model for 10 epochs
>>> trainer.train(train dataloader= train st loader, val dataloader= val st loader, epochs= 10)
# test the model, and get the MSE between true data and predict data
>>> tester.test(test st loader, metric="MSE")
```

DeepEST: A Python Libary for Spatio-Temporal Epidemiology Prediction

Yuhang Wang, Yinghao Zhu, Lifang Liang, Yasha Wang, Ewen M. Harrison, Liantao Ma, Junyi Gao*

