COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching

Junyi Gao¹, Cao Xiao¹, Lucas M. Glass¹², Jimeng Sun³

¹Analytics Center of Excellence, IQVIA

²Department of Statistics, Temple University

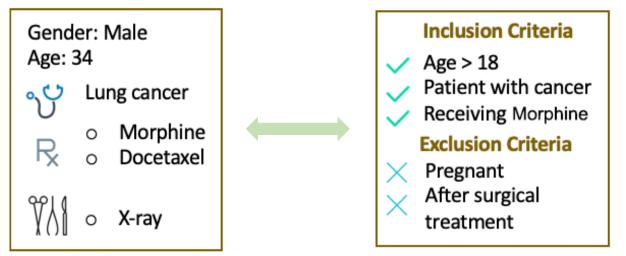
³Department of Computer Science, University of Illinois Urbana-Champaign

Content

- Clinical Background
- Challenges
- Method
- Experiment Results

Clinical Background 1: What is patient trial matching?

- Electronic Health Records (EHR): A type of high-dimensional sequence data
 - Procedures
 - Diagnosis
 - Drugs
- Clinical trials: Unstructured text data
 - Inclusion Criteria
 - Exclusion Criteria



Clinical Background 2: Why automated patient trial matching is important?

Essential Annual market over \$46 billion

Time50% of trials delayed, 25% of cancerConsumingtrials failed due to enrollment.

High Costs

High recruitment cost: \$6000 to \$7500 per patient.

Content

Clinical Background

Challenges

- Multi-granularity medical concept
- Many-to-many relationship between patient and trials
- Explicit inclusion/exclusion criteria handling
- Method
- Experiment Results

Challenge 1: Multi-granularity medical concept

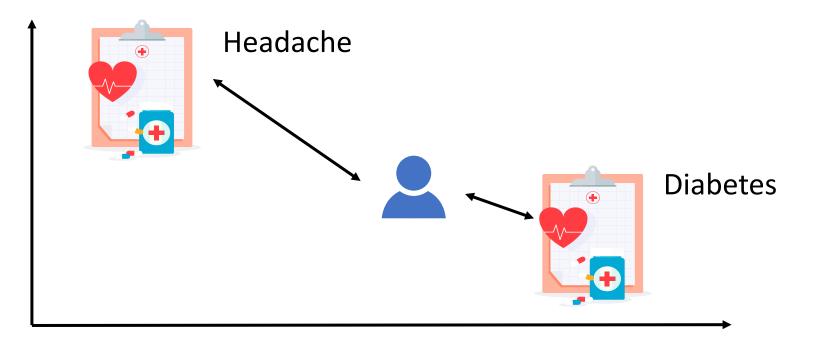
- Eligibility criteria encode more general disease
- EHRs use more specific medical codes

- ✓ Pleuropericardial adhesion
- ✓ Myocardial infraction
- ✓ Inflammatory cardiomyopathy

Trial of Cardiovascular Disesases

Challenge 2: Many-to-many relationship between patients and trials

• Each patient may enroll in more than one trial and vice versa



• Align the patient embedding to different trial embeddings may confuse the embed function

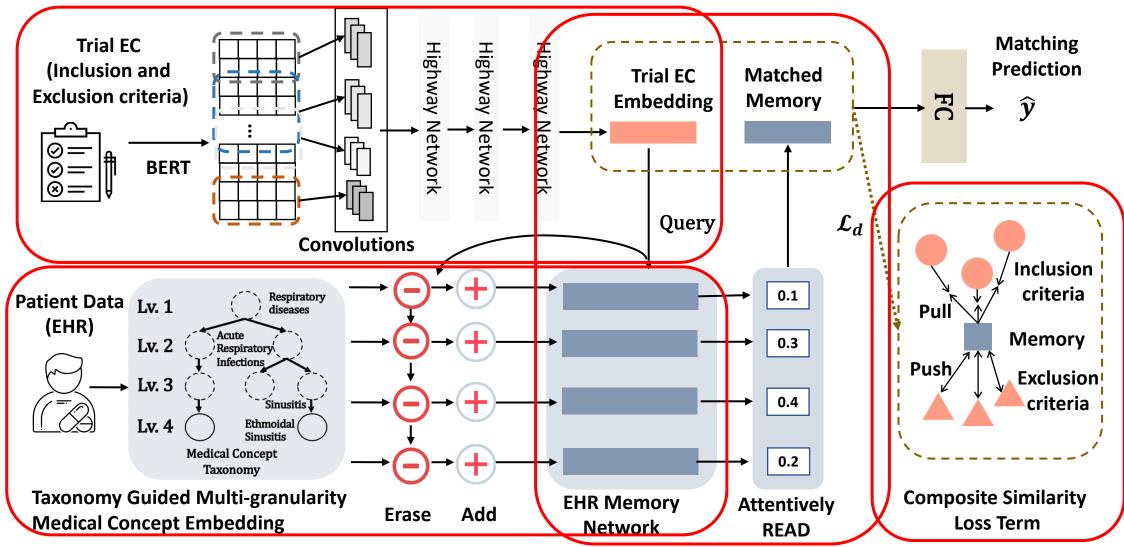
Challenge 3: Explicit inclusion/exclusion criteria handling

 Inclusion and Exclusion criteria describe desired and unwanted from the targeted patients

Content

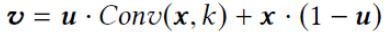
- Clinical Background
- Challenges
- Method
 - Trial eligibility criteria embedding
 - Taxonomy guided patient embedding
 - Attentional record alignment and dynamic matching
 - Explicit inclusion/exclusion criteria handling
- Experiment Results

Method Overview: COMPOSE

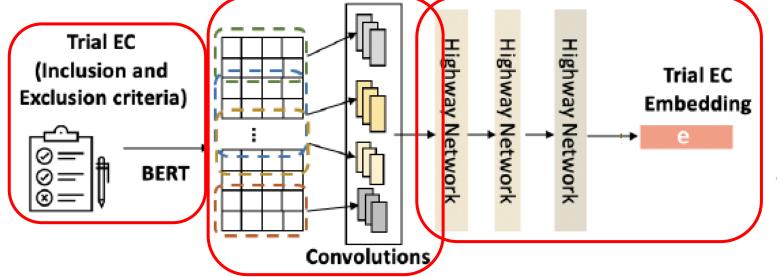


Method: Trial eligibility criteria embedding

- Use BERT to learn contextual embeddings for EC sentence $[w_1, ..., w_N]$ $\tilde{c} = [\tilde{w}_1, ..., \tilde{w}_N] = BERT([w_1, ..., w_N])$
- Use different kernel sizes to capture different granularity semantics $\mathbf{x} = [Conv(\tilde{c}, k_1), Conv(\tilde{c}, k_2), Conv(\tilde{c}, k_3), Conv(\tilde{c}, k_4)]$
- Use highway network and max pooling to obtain the final EC embedding $u = \sigma(Conv(x, k))$

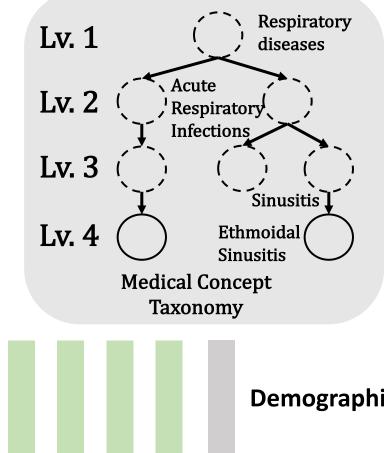


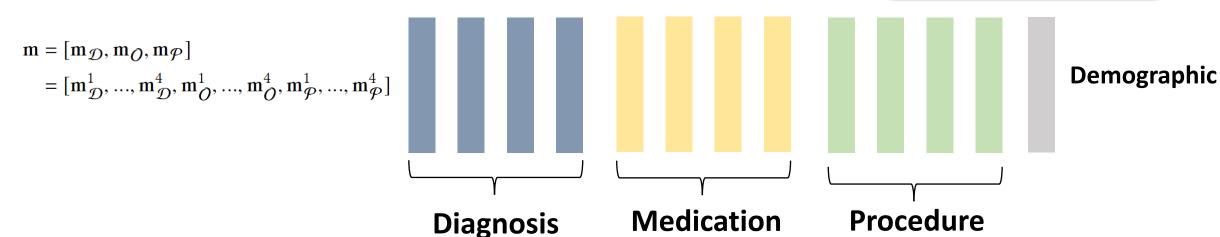
 $\boldsymbol{e} = MaxPool(\boldsymbol{v})$



Method: Taxonomy guided patient embedding

- Use medical concept taxonomy to divide each concept into four levels
 - the Uniform System of Classification (USC)
- Three memory networks to store diagnosis, medications and procedures





Lv. 1 Lv. 2 Lv. 3 Lv. 4

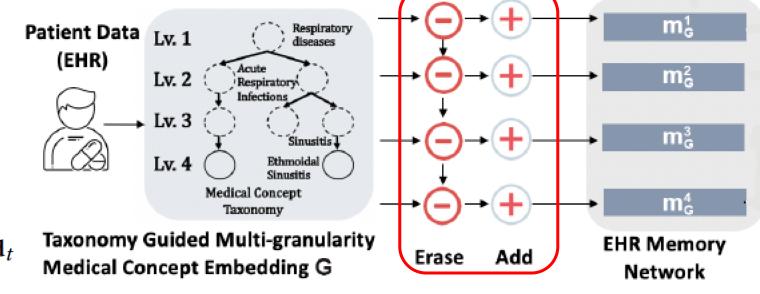
Method: Taxonomy guided patient embedding

- Augment medical codes with textual description:
 - Code 692.9 -> "Contact dermatitis and other eczema"
 - $\widetilde{g}_t = MaxPool(BERT([w_1,...,w_L]))$
- Update memories at each visit
 - Erase-followed-by-add:

$$\mathbf{erase}_t = \sigma(\mathbf{W}_e \widetilde{g}_t^k \mid + \mathbf{b}_e),$$
$$\mathbf{add}_t = tanh(\mathbf{W}_a \widetilde{g}_t^k + \mathbf{b}_a)$$

• Update slot:

$$m_G^k \leftarrow m_G^k \odot (1 - \operatorname{erase}_t) + \operatorname{add}$$

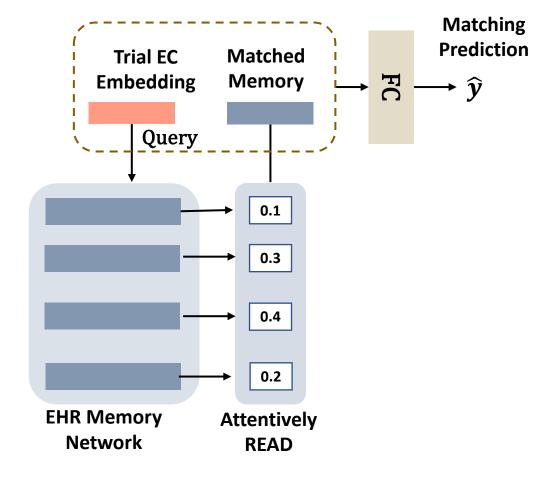


Method: Attentional record alignment and dynamic matching

• Let each EC correspond to the sub-memories

- Attentional matching
 - Trial EC embedding -> Query
 - Matched memory -> Response

$$a_{k,G} = \frac{exp(m_G^{k^{\mathrm{T}}}MLP(e))}{\sum_{x \in \{\mathcal{D}, O, \mathcal{P}\}} \sum_{i=1}^{4} exp(m_x^{i^{\mathrm{T}}}MLP(e))}$$
$$\widetilde{m} = \sum_{x \in \{\mathcal{D}, O, \mathcal{P}\}} \sum_{i=1}^{4} a_{i,x}m_x^i$$



Method: Explicit inclusion/exclusion criteria handling

• Classification loss:

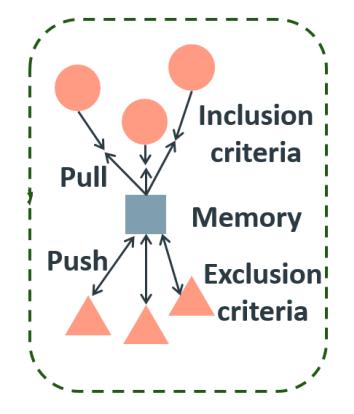
$$\mathcal{L}_{c} = -(\boldsymbol{y}^{\mathrm{T}} log(\hat{\boldsymbol{y}}) + (1 - \boldsymbol{y})^{\mathrm{T}} log(1 - \hat{\boldsymbol{y}}))$$

• Inclusion/Exclusion loss:

$$\mathcal{L}_{d} = \begin{cases} \frac{1 - d(e, \widetilde{m}_{I})), \quad \rightarrow \mathbf{0} & \text{if } e \text{ is } e_{I} \\ max(0, d(e, \widetilde{m}_{E}) - \alpha), & \text{if } e \text{ is } e_{E} \\ \hline \end{pmatrix} >= \mathbf{\alpha}$$

• Final loss:

 $\mathcal{L} = \mathcal{L}_c + \mathcal{L}_d$



Composite Similarity Loss Term

Content

- Background & Motivation
- Problem Formulation
- Insights
- Solution
- Experiment
 - Patient trial matching
 - Discussions
 - Case studies

Experiment

Dataset

- Clinical trial data
 - 590 trials from publicly available data source (clinicaltrials.gov)
 - 12,445 criteria-level EC statements
- Patient EHR data
 - 83,371 patients from 2002 to 2018

Experiment: Patient trial matching

- Outperforms all baseline models across both trial level and criteria level matching in all evaluation metrics.
- 24.3% higher accuracy for trial level matching
- 8.8% higher accuracy and 4.7% higher AUROC for criteria level matching

	Model	Accuracy		Model	Accuracy	AUROC	AUPRC
	LSTM+GloVe	0.4294 ± 0.010		LSTM+GloVe	0.722±0.010	0.789±0.009	0.784±0.009
Baselines Reduced	LSTM+BERT	0.5460 ± 0.008	Baselines	LSTM+BERT	0.834 ± 0.008	0.845 ± 0.007	0.840 ± 0.007
	Criteria2Query	$0.6147 \pm -$	Dustillites	DeepEnroll	0.869 ± 0.012	0.936 ± 0.013	0.947 ± 0.011
	DeepEnroll	0.6737±0.021		COMPOSE-MN	0.899 ± 0.012	0.955±0.013	0.960 ± 0.010
	COMPOSE-MN	0.7833 ± 0.011	Reduced	COMPOSE-Highway	0.912 ± 0.007	0.965 ± 0.007	0.967 ± 0.009
	COMPOSE-Highway COMPOSE-L ₁	0.8102 ± 0.009 0.8212 ± 0.010		COMPOSE- \mathcal{L}_d	0.939 ± 0.010	0.976 ± 0.009	0.973 ± 0.007
Proposed	COMPOSE	0.8373±0.012	Proposed	COMPOSE	$0.945 {\pm} 0.008$	$0.980 {\pm} 0.007$	$0.979 {\pm} 0.008$

Discussion: Varying length of patient record

- How COMPOSE performs in matching trials with patients who have short or long records?
 - Short (1 visit), Medium (2-3 visits), Long (≥ 4 visits)
- COMPOSE have robust performance

Model	Short	Medium	Long
LSTM+GloVe	0.4906	0.4328	0.0000
LSTM+BERT	0.5484	0.5512	0.5338
Criteria2Query	0.6833	0.5989	0.5172
DeepEnroll	0.6779	0.6797	0.6443
COMPOSE	0.8420	0.8389	0.8350

Discussion: Varying disease types

- How COMPOSE performs on different types of diseases?
 - Chronic, Oncology, Rare diseases
- Achieves 77.3% higher accuracy for chronic diseases
- Most baseline models fail to match correct patients for oncology and rare diseases

Model	Chronic Diseases	Oncology	Rare Diseases
LSTM+GloVe	0.1793	0.0000	0.0000
LSTM+BERT	0.2062	0.0000	0.0000
Criteria2Query	0.5103	0.2722	0.2292
DeepEnroll	0.3345	0.0000	0.0000
COMPOSE	0.5931	0.6370	0.6875

Discussion: Varying trial phases

- How COMPOSE performs on different phases?
 - Phase I, II, III
- 155% higher accuracy for phase I trials
- 19% higher accuracy for phase II trials
- 27% higher accuracy for phase III trials

Model	Phase I	Phase II	Phase III
LSTM+GloVe	0.0008	0.5865	0.3743
LSTM+BERT	0.0025	0.6045	0.4862
Criteria2Query	0.3025	0.6433	0.5870
DeepEnroll	0.2034	0.7493	0.6329
COMPOSE	0.5189	0.8939	0.8005

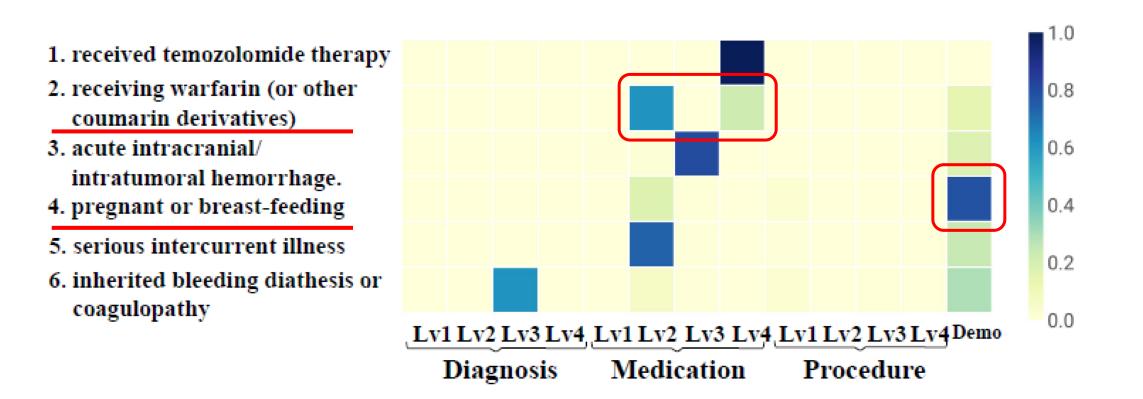
Discussion: Varying threshold of matching

- Some inclusion or exclusion criteria can be too strict to prevent finding patients
- How COMPOSE performs on varying thresholds?
 - 70%, 80%, 90%
- COMPOSE have robust performance under all thresholds

Model	70% Matching	80% Matching	90% Matching
LSTM+GloVe	0.6218	0.5862	0.5057
LSTM+BERT	0.7231	0.6861	0.6238
DeepEnroll	0.8225	0.7963	0.7422
COMPOSE	0.9334	0.9193	0.8915

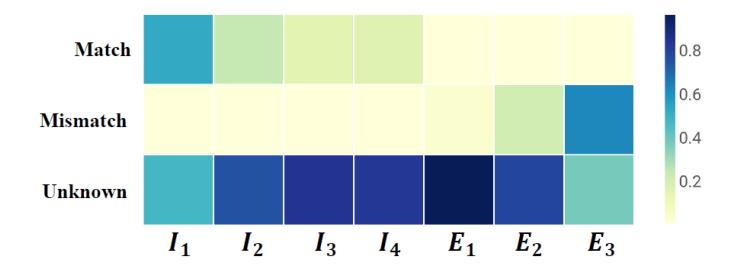
Case study: Attention weights on memory slots

• A trial on Cabozantinib which treats grade IV astrocytic tumors



Case study: Failed case

- A trial for Early Stage Non-Small Cell Lung Cancer
- I2: Lung function capacity capable of tolerating the proposed lung surgery
- 13: Eastern Cooperative Oncology Group (ECOG) Performance Status of 0-1
- I4: Available tissue of primary lung tumor



Thank you!

COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching

https://github.com/v1xerunt/COMPOSE

Junyi Gao¹, Cao Xiao¹, Lucas M. Glass¹², Jimeng Sun³

¹Analytics Center of Excellence, IQVIA ²Department of Statistics, Temple University ³Department of Computer Science, University of Illinois Urbana-Champaign