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• Electronic Health Records (EHR): A type of high-dimensional sequence 
data
• Procedures
• Diagnosis
• Drugs

• Clinical trials: Unstructured text data
• Inclusion Criteria
• Exclusion Criteria

Clinical Background 1: What is patient trial matching?



Clinical Background 2: Why automated patient trial matching 
is important?

Annual market over $46 billionEssential

50% of trials delayed, 25% of cancer 
trials failed due to enrollment.

Time 
Consuming

High recruitment cost: $6000 to $7500 
per patient.High Costs



• Clinical Background
• Challenges
• Multi-granularity medical concept
• Many-to-many relationship between patient and trials
• Explicit inclusion/exclusion criteria handling

• Method
• Experiment Results

Content



Challenge 1: Multi-granularity medical concept

• Eligibility criteria encode more general disease
• EHRs use more specific medical codes 

Trial of Cardiovascular Disesases

ü Pleuropericardial adhesion

ü Myocardial infraction

ü Inflammatory cardiomyopathy



Challenge 2: Many-to-many relationship between patients and 
trials 

• Each patient may enroll in more than one trial and vice versa

• Align the patient embedding to different trial embeddings may confuse the 
embed function

Headache

Diabetes



Challenge 3: Explicit inclusion/exclusion criteria handling

• Inclusion and Exclusion criteria describe desired and unwanted from 
the targeted patients

Age > 18Inclusion criteria Exclusion criteria
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Method Overview: COMPOSE
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Method: Trial eligibility criteria embedding
• Use BERT to learn contextual embeddings for EC sentence [𝑤%, … , 𝑤&]

• Use different kernel sizes to capture different granularity semantics 

• Use highway network and max pooling to obtain the final EC embedidng



Method: Taxonomy guided patient embedding
• Use medical concept taxonomy to divide each 

concept into four levels
• the Uniform System of Classification (USC)

• Three memory networks to store diagnosis, 
medications and procedures
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• Augment medical codes with textual description:
• Code 692.9 -> “Contact dermatitis and other eczema”

• Update memories at each visit
• Erase-followed-by-add:

• Update slot:

Method: Taxonomy guided patient embedding



Method: Attentional record alignment and dynamic matching
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• Trial EC embedding -> Query
• Matched memory -> Response



Method: Explicit inclusion/exclusion criteria handling

• Classification loss:

• Inclusion/Exclusion loss:

• Final loss:

-> 0

>= α
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• Dataset
• Clinical trial data

• 590 trials from publicly available data source (clinicaltrials.gov)
• 12,445 criteria-level EC statements

• Patient EHR data
• 83,371 patients from 2002 to 2018

Experiment



• Outperforms all baseline models across both trial level and criteria level matching in all 
evaluation metrics.

• 24.3% higher accuracy for trial level matching
• 8.8% higher accuracy and 4.7% higher AUROC for criteria level matching

Experiment: Patient trial matching



• How COMPOSE performs in matching trials with patients 
who have short or long records?
• Short (1 visit), Medium (2-3 visits), Long (≥ 4 visits)

• COMPOSE have robust performance

Discussion: Varying length of patient record



• How COMPOSE performs on different types of diseases?
• Chronic, Oncology, Rare diseases

• Achieves 77.3% higher accuracy for chronic diseases
• Most baseline models fail to match correct patients for oncology and 

rare diseases

Discussion: Varying disease types



• How COMPOSE performs on different phases?
• Phase I, II, III

• 155% higher accuracy for phase I trials
• 19% higher accuracy for phase II trials 
• 27% higher accuracy for phase III trials

Discussion: Varying trial phases



• Some inclusion or exclusion criteria can be too strict to prevent finding 
patients
• How COMPOSE performs on varying thresholds?
• 70%, 80%, 90%

• COMPOSE have robust performance under all thresholds

Discussion: Varying threshold of matching



• A trial on Cabozantinib which treats grade IV astrocytic tumors

Case study: Attention weights on memory slots



• A trial for Early Stage Non-Small Cell Lung Cancer

Case study: Failed case

• I2: Lung function capacity capable of tolerating the proposed lung surgery

• I3: Eastern Cooperative Oncology Group (ECOG) Performance Status of 0-1

• I4: Available tissue of primary lung tumor
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