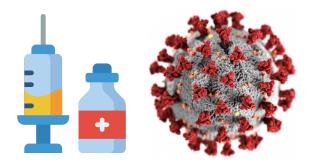


Machine Learning Powered Mobile HealthCare Unit for Addressing Childhood Vaccination Disparities Big Ten Augmented Intelligence Bowl The vAcc Ine Heroes

Students: Chaoqi Yang, Yaroslav Bodnar, Junyi Gao **Mentors:** Jimeng Sun, Mary Stapel, Scott Barrows, Adam Cross



Oct 2021

Childhood Immunizations

- Low-income zip codes have ~40% vaccination rate
- Childhood rates declined by 68% in Massachusetts during COVID-19

Health Disparities

 Race, socioeconomic status, location etc.

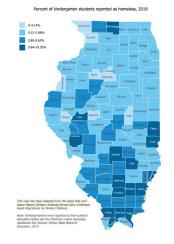
Advantages of Mobile Care Unit

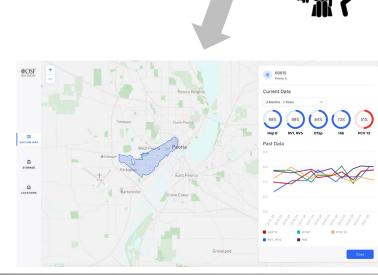
- Flexible: take care "on the road"
- Accessible: provide care when and where it is needed
- **Technology:** mobile unit can benefit from technology advances
- Trust-building: mobile units can be avenues of trust into the community

Challenges

- Site selection: where to send the carea-van?
- **Supply estimation:** how to accurate estimation of clinical supply.

Machine Learning Tasks


Task 1: Vaccination site selection


- How to select the best sites for vaccination events?
- What are the ranking criteria of different locations?

Task 2: Vaccine supply prediction

• Given the location and time of a vaccination event, how to accurately estimate the vaccine supply?

Visualization interface

Heatmap, basic statistics, prediction results

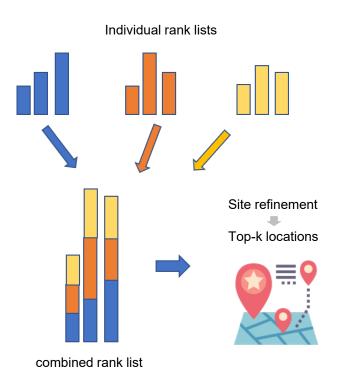
Pediatric EHRs

Historical Monthly Vaccination Info (claims data, ~10 years)

Location-Specific Vaccination Statistics (to be added)

- Previous vaccination event statistics
 - ~7 pediatric vaccination events from this year
 - 16 flu vaccination events from 2018 to 2021
- Other data sets
 - School vaccination statistics
 - 94 census features for each location

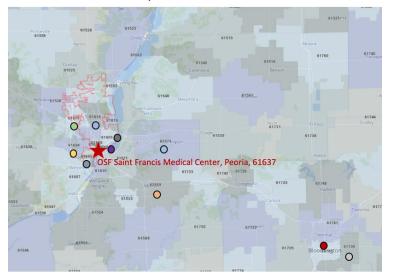
Some Past Events:


Location & Time	# Patients	Vaccine
Knoxville Peds Physical Event 2806 Knoxville Ave. Peoria 61604, July 17	4	
Knoxville Peds Physical Event 2806 Knoxville Ave. Peoria 61604, July 17	17	
Dream Center Peoria 714 Hamilton Blvd, Peoria, July 31	7	
New Beginnings Worship Center 1910 W Lincoln Ave, Peoria August 14	8	

Task1: Vaccination Site Selection

Goal: Identify top-k locations for vaccination events

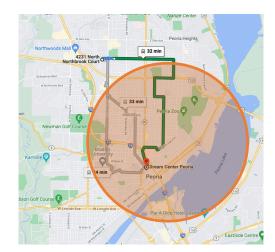
- 1. Multiple rank lists
 - We create individual rank lists of diverse ranking criteria
 - Criteria include
 - Vaccination rate, Vaccination rate change, Population density, Social economic status, Social vulnerability index, ...
- 2. Rank aggregation
 - Create a combine rank list that is closest to all the individual rank lists (Markov Chain Type 4 method)
- 3. Site refinement
 - Further optimize the site candidates from the top ranked locations
 - Consider logistic constraints, previous events, diversity of the locations


Method Benefits: 1) Interpretable and 2) Extensible

Local Map Around Peoria County

* Red contour indicates Peoria county

Vaccination Change Pediatric Driving Dis. Overall Zip Code Income Status to OSF Rate Rate Pop. Rank 61615 1 96% 98% 87% 91% 9.896 miles 2 61571 95% 98% 92% 88% 23.959 miles 3 61604 82% 4.719 miles 88% 95% 93% 4 61704 92% 94% 98% 95% 76.449 miles 5 61550 97% 90% 84% 88% 22.935 miles 6 61614 93% 85% 89% 82% 10.365 miles 7 61605 71% 93% 88% 68% 3.604 miles 8 61603 83% 88% 88% 63% 4.373 miles 61701 9 93% 78% 95% 83% 73.91 miles 10 61602 67% 87% 69% 84% 3.445 miles

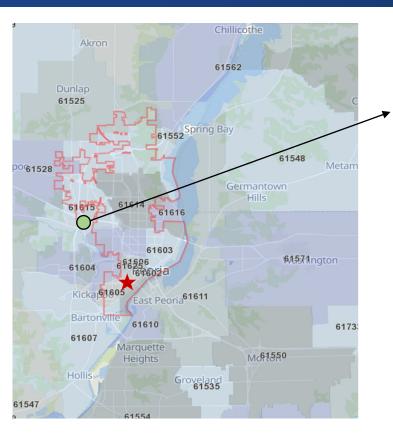

Top ranked Zip codes and individual rank percentages (top %)

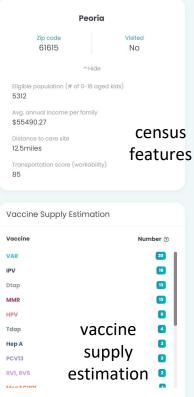
The figure is from unitedstateszipcodes.org

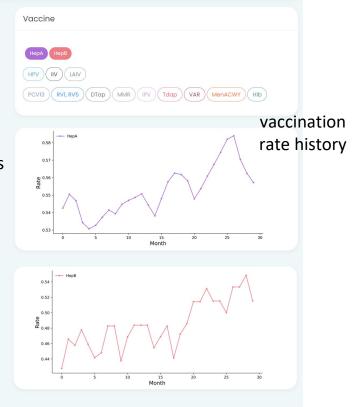
* Totally 120 zip codes near Peoria

Goal: Given upcoming event info, estimate the vaccine supplies

- Challenges:
 - Limited historical data to create the prediction models
- Approach Spatio-temporal calibration method
 - Estimate the overall <u>unvaccinated population</u> near the selected event based on historical EHR and claims data, P
 - Estimate the participating probability
 - *α* = Func (location, time, weather, marketing, driving distance,...)
 - Vaccine supply = $\alpha * \mathbf{P}$
- Benefit: leverage rich data (EHR and claims) to make up for limited historical event data






Our First Event Location: Dream center at Peoria Time: 9 – 12PM, July 31, 2021

	Hep A	HPV	VAR	MMR	IPV	Dtap	Tdap
⊡	0	0	4	4	4	4	3

Vaccine Supply Estimation

Prediction of Unvaccinated Population, P

	MAPE	R-square	CCC
Нер А	0.1815	0.9891	0.9941
HPV	0.1055	0.9918	0.9958
VAR	0.1541	0.9897	0.9947
MMR	0.1966	0.9898	0.9946
IPV	0.2093	0.9906	0.9952
Dtap	0.1501	0.9887	0.9940
tdap	0.0933	0.9841	0.9921

Supply Prediction (Simulation)

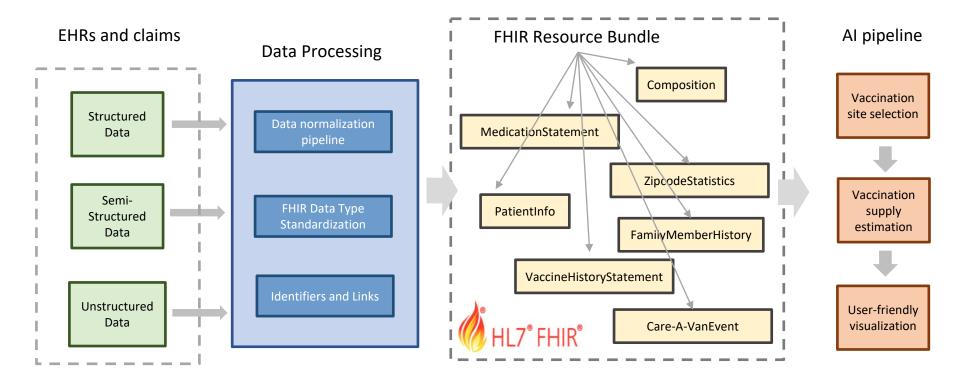
RMSE	MAPE
2.988	0.5089
4.096	0.5850
4.859	0.6428
4.727	0.4905
6.765	0.5901
6.188	0.6714
3.387	0.4722
	2.988 4.096 4.859 4.727 6.765 6.188

Supply Prediction (Event Data)

	RMSE	MAPE
Нер А	1.291	0.3889
HPV	3.697	1.2500
VAR	4.123	1.3170
MMR	1.826	0.2833
IPV	4.447	0.8754
Dtap	1.732	0.3667
tdap	1.915	0.4222

$$MAPE = \frac{1}{n} \sum_{i} \frac{|\hat{y}_{i} - y_{i}|}{|y_{i}|} \qquad R^{2} = 1 - \frac{\sum_{i} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i} (\bar{y}_{i} - y_{i})^{2}}$$

Concordance correlation coefficient


$$\frac{\sum_{i}(\widehat{y_{i}} - y_{i})^{2}}{\sum_{i}(\overline{y_{i}} - y_{i})^{2}} \qquad RM$$

 $CCC = \frac{2\rho\sigma_{\hat{y}}\sigma_{y}}{\sigma_{\hat{y}}^{2} + \sigma_{y}^{2} + (\mu_{\hat{y}} - \mu_{y})^{2}}$

$$MSE = \sqrt{\frac{\sum_{i} (\hat{y}_{i} - y_{i})^{2}}{n}}$$

University of Illinois Urbana Champaign

Join us in protecting the health of all children

1

Future Efforts

Data Acquisition

- Access I-Care data and more real event data Research Goal
- Submit a manuscript for publication by early 2022 Deployment Goals
- Conduct user study and improve the visualization
- Finish integration with "FHIR for ML" interface
- Customize our AI pipeline for other regions

Yaroslav Bodnar Medical Resident
Mary Stapel Medical Director of Community Care
Adam Cross Pediatric Hospitalist & Clinical Informaticist
Scott Barrows Director, Innovation Design Lab

Chaoqi Yang PhD Student

Junyi Gao PhD Student

Jimeng Sun Computer science professor

